
llad1e lhaeli

.
PRELIMINARY

INSTRUCTION MANUAL

DISK BASIC VERSION 1.1

TRSDOS VERSION 2.0

JULY 71978

This Manual describes the first release of TRSDOS. New releases will contain additions and
new features not implemented in this preliminary version.

LIMITED WARRANTY
Radio Shack warrants for a period of 90 days from the date of delivery to
customer that the computer hardware described herein shall be free from defects
in material a·nd workmanship under normal use and service. This warranty shall be
void if the computer case or cabinet is opened or if the unit is altered or modified.
During this period, if a defect should occur. the product must be returned to a
Radio Shack store or dealer for repair. Customer's sole and exclusive remedy in
the event of defect is expressly limited to the correction of the defect by adjust
ment, repair or replacement at Radio Shack's election and sole expense, except
there shall be no obligation to replace or repair items which by their nature are
expendable. No representation or other affirmation of fact , including but not
limited to statements regarding capacity , suitability for use. or performance of the
equipment, shall be or be deemed to be a warranty or representation by Radio
Shack, for any purpose, nor give rise to any liability or obligation of Radio Shack
whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT, THERE ARE
NO OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE AND IN NO EVENT SHALL
RADIO SHACK BE LIABLE FOR LOSS OF PROFITS OR BENEFITS, INDI
RECT, SPECIAL, CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARIS
ING OUT OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

IMPORT ANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
''AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by
Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use
or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the program,

run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

©Copyright 1978, by Radio Shack, A Division of Tandy Corporation , Ft. Worth. Texas 76102

TRSDOS 2.1 FACT SHEET

Some of you may be a little confused about the terminology, "Version 2.1",
"first release", etc. You'll be hearing these terms often as TRSDOS is
updated, so here's an explanation.

A new version represents a substantial expansion of the previous version .
For example, new utilities, higher level language packages, etc., might
be included in a new version. Such versions are numbered l ,2,3, etc.

On the other hand, a new release is simply an update of the previous
release of a given version. This later release generally includes fixes
of problems in the earlier version, wider implementations of colTITiands,
enhancements of corrmands, etc. The releases are numbered .1, . 2, . 3, etc.

Therefore when we talk about "Version X. Y", that's short for Release Y of
Version X.

NOTE: Uppercase letters, blanks(~) and punctuation are required
as shown. Lowercase letters indicate parameters and options you
supply from a specified set as given in that corrmand's syntax
description. See Preliminary Instructions for 2.0 for an explanation
of filespec, drivespec, password, etc.

Corrections of problems in 2.0

1. Disk file-space allocation and release (SAVE and KILL) now function
correctly. Use of a near-full or full diskette is okay.

2. FORMAT and BACKUP corrmands have been fixed so they do not automatically
re-boot the system upon completion. This gives you a chance to see
if any error messages were generated . Pressing !ENTtr{] will then re-boot
the system.

3. The DEBUG utility can (and should be) deleted from RAM when you're
through usin~by pressing RESET and then entering the corrmands
DEBUG~(OFF) JE_NTI_Rj
DIR \~NT.IB_j

This colTITiand sequence will prevent unexpected re-entry into the
DEBUG ~ENT.r~. NOTE: To exit the DEBUG utility to TRSDOS, type
G402D fH.i .

4. The LIST co1T1Tiand now positions the cursor properly .

fact sheet/2

Conmands Added or Changed in 2.1

APPEND~filespecl~TO~filespec2

Appends the first file specified to the end of the second file specified .
The first file is not changed. This conmand is primarily for use with data
files.
Example:

APPEND~DATA7~TO~DATA8

ATTRIB~filespec~(attrib,ACC=pswl ,UPD=psw2,PROT=param)

where attrib
~
~
param

= I (for Invisible). Optional and usually omitted .
= new access password. Optional.
= new update password. Optional.
= one of the following: KILL,RENAME,WRITE,READ,EXEC. Optional.

This conmand lets you assign two passwords to the file specified: an access
password, which will allow access to the file as determined by the PROT
parameter; and an update password, which will allow total access to the
file. Note that the protection levels form a hierarchy, and that each
level implies access to all lower levels:

KILL implies total access.
RENAME implies access to rename, write, read and execute.
WRITE implies access to write, read and execute.
READ implies access to read and execute.
EXEC impaies access to execute only .

The I (Invisible) attribute is optional. It makes the file invisible to
a nonnal DIR conmand (see DIR).

Be very careful in assigning protection attributes to a file.
forget the password, the file cannot be accessed or updated,
the PROT conmand and Master Password (see PROT below).
Examples:

ATTRIB~PROG1/BAS.PSW~(ACC=PSW1,UPD=PSW2,PROT=READ)
assigns new passwords to PROGl .

ATTRIB~PROG1/BAS. PSW2~(ACC=,UPD=)
removes the passwords from PROGl .

If you
except via

fact sheet/3

DEVICE

This colTllland has no arguments or parameters. It simply lists all currently
defined 1/0 devices : KI (keyboard),DO (Video Display),and PR (Line Printer}.

DIRj:dj(paraml,param2,param3}

where :dis an optional drive specification (d=0,1,2 or 3) and ~ararnli param2,
param3are optional parameters, including any, all or none oft e fol owing :

S Display all System and non-Invisible files.
I Display all Invisible and non-System files.
A Give the disk space allocation for all files displayed.

Disk space allocation is indicated as follows: LRL (Logical Record Length},
EOF (End Of File}, and GRANS (number of Granules used; each granule=½ track,
or 1.25K}.

Examples :
~

DIR

displays user files (non-System, non-Invisible} on drive 0.

DIRj:lj(l,S,A}

displays all files on drive 1, including each file~ disk space allocation.

NOTE: DIR lists a P beside all user files with non-blank passwords.

If the Directory listing cannot fit on the screen, only the first 12 lines
will be displayed. PresslENTERlto see the next 16 lines of the listing.

--

DUMP~filespec~(START=X'AAAA',END=X'8B88' ,TRA=X 'CCCC'}

where AMA, 88B8 , CCCC are hexadecimal addresses in RAH, and AAAA, 8888
are above 6Frr:- - -

This colTllland writes the contents of memory from the specified start address
to the end address, and specifies a transfer address where execution of the
program is to begin after the file is called for execution. The main purpose

fact sheet/4

of DUMP is to let you create disk files containing machine code programs
(created with TBUG, Editor/Assembler, BASIC POKEs, etc., or loaded from
tape under SYSTEM comnand).

Most LEVEL II System tapes cannot be executed under DOS, because of
differences between LEVEL II and DOS in terms of RAM use. See More Things
You Should Know, Item 6.

FREE

This function requires no arguments or parameters . It displays the amount
of free space remaining on all currently in-use drives, in terms of files
available and unused granules.

Each diskette can support up to 48 user files .

--

LIB

Requires no parameters or arguments. LIB displays all TRSDOS system comnands
available .

--

LOAD filespec

Loads the specified file (which should contain Z-80 object code) into RAM
and returns control to TRSDOS. The specified file would normally have been
created by a DUMP or TAPEDISK conmand .

--

PROT~:d~(PW,param)

where :dis an optional drive spec, PW is an optional explicit parameter,
and parim is an optional parameter, either LOCK or UNLOCK.

This comnand changes the protection status of all non-System files on the
specified drive. Drive O is the default drive i f none is specified.

fact sheet/5

To use PROT, you must know the diskette's Master Password, assigned during
FORMAT or BACKUP of the diskette. (Your TRSDOS diskette has the password ,
PASSWORD.)

To change the Master Password, specify PW. To remove passwords from al l user
files, specify UNLOCK . To place the Master password on all user files,
specify LOCK.

Examples:

PROT~:l~(UNLOCK)

After you enter this conmand, TRSDOS asks for the Master Password. If you
enter the right word, all passwords will be removed f rom user files on the
drive 1 diskette.

PROT (PW,LOCK)

After you specify the Master Password correctly, TRSDOS will prompt you to
enter a new Master Password. Then this new password will be assigned to the
drive O diskette and to all its user files .

RENAME~filespecl~TO~filespec2

Allows you to change the name (and/or extension) of the first file specified
as described in the second filespecification. You cannot change or add
passwords with RENAME. The file's protection status also remains unchanged.

VERIFY~(param)

where param = ON or OFF. VERIFY (ON) causes TRSDOS to verify all user
disk-write operations (for example, file-writes from BASIC). VERIFY (OFF)
disables this function.

VERIFY does not affect System disk writes; they are always veri fied. Also
note that TRSDOS powers up in a VERIFY (OFF) condition.

TAPEDISK

This is a special utility which allows you to load Radio Shack SYSTEM tapes
into RAM, and then dump the file from RAM into a speci fied file on the di sk.

fact sheet/6

Do not attempt to read in tape files which load below hexadecimal address
54F4. See More Things You Should Know, Item 6.

TAPEDISK !ENTER!

initiates the TAPEDISK program and returns with a special prompt ,

?

You then enter one of three comnands :

c !ENTER!
turns on the Recorder (Recorder #1 if two are connected) and loads a
SYSTEM-fonnat tape into RAM. When the file has loaded, the prompt
returns. You can then load another SYSTEM tape into RAM by typing C
!ENTER! again, or enter another conmand .

F~filespec~AAAA~BBBB~CCCC !ENTER!

is the dump to disk coomand, where filespec is the desired file name and
must include a drive specification; AAAA is the starting address in RAM;
BBBB the ending address; and CCCC the entry point for executi on of the
TITe. All addresses are in hexadecimal form. After the dump, the prompt
returns.

E !ENTER!

returns you to TRSDOS.

DISKDUMP/BAS

1s a special utility which allows you to make a sector-by-sector examination
of any specified user file . DISKDUMP/BAS is a BASIC program, so you must
be in DISK BASIC and press!ENTER!for the FILES? and MEMORY SIZE? questions.

The program is written to dump to the Line Printer; if you do not have one
connected , change all LPRINTs to PRINTS and the dump will go to the Display.

The program prompts you to enter the filename and then to enter the sector
you want to examine . You can simply presslENTER!and the sector examination
will be sequential, starting with sector 1. Note that if you attempt to
examine a sector which is higher than the highest sector used by that file,
no error message is given and the sectors will appear as zero-value bytes.

fact sheet/7

The sectors are printed 16 bytes at a time; and these 16 bytes are printed
first in hex code and then with the corresponding ASCII code. The ASCII
representation is surrounded by! symbols. If the hex code does not
correspond to an alphanumeric character, a period is returned for that
byte in the ASCII representation.

This program will be very useful in helping you understand random and
sequential data formats as stored on disk .

CLOCK {param}

where para1 is either ON or OFF. If no parameter is given, ON is assumed.
This funct on was in 2. 0; however, the OFF capability has been added.

TRACE (param}

where param is either ON or OFF . If no parameter is given, ON is assumed.
TRACE was in 2.0, but the OFF capability has been added.

More Things You Should Know

1. Always follow these rules when connecting Mini Disk drives to the
TRS-80:

a) You can use from one to four drives with TRSDOS. However,
your set of drives must include one (and only one) drive with
Radio Shack Catalog Number 26-1160. All other optional drives
must bear Catalog Number 26-1161.

b) Drive 26-1160 must always be the "terminal drive" (the furthest
away from the Expansion Interface), and there must be no empty
connectors between the terminal drive and the Expansion Interface.

c) Also remember that TRSDOS refers to the drives by the numbers
O,I,2 and 3, where drive O is closest to the Expansion Interface,
and drive 3 is furthest from it.

2. To copy BASIC program files from a 2.0 to a 2.1 diskette using only
one drive (drive 0), first CSAVE the 2.0 file onto cassette; then
reboot the system with a 2.1 diskette, CLOAD the file, and SAVE it
onto the 2.1 diskette.

3. The maximum TAB for an LPRINT statement is 63. The Line Printer won't
tab past column 63.

There's a simple way around this limitation, using the STRING$ function
to simulate tabs past column 63. The idea is to print out a string of
blanks to move the print head to the desired position. The STRING$
function will produce such a string of blanks. However, it will only
move the print head relative to the current print position, so you
have to do a few calculations to move the print head to a particular column.

In general,

TAB(n) can be simulated by STRING$(N-l-current print position,32)

N-1-current print position locates the desired column in relation to the
current position; 32 is the ASCII code for blank.

Example:

LPRINT TAB (5) 11 NAME 11TAB(30) 11ADDRESS 11 STRING$(63,32) 11 BALANCE11

will print "NAME" at column 5, "ADDRESS" at column 30, and "BALANCE" at
column 100.

more thi ngs/2

4. PRINT#n (write to sequential disk file) puts information on the diskette
in the same format that a PRINT (to Display) would put the same infor
mation on the Video Display . It does not use the PRINT#-n (print to
tape) fonnat. For example, if A=3.14159,B=-2.3, then
PR INT# l ,A ,B
would print the following in file 1:

)S3.14159)S)S~~~~~~-2.3~

But

PRINT#l,A;B
would print the data without all the extra spaces:

~3.14159lS-2.3)S

So be sure to use semicolons as delimiters when writing numeric data
to a disk file with PRINT#n .

5. Using PRINT#n to write strings to sequential files also requires special
attention, because delimiters will not automatically be inserted after
string data.

For example, if A$="JOHN SMITH" and B$= 11 JILL SMITH", then

PRINT#l,A$,B$

will write the data on disk as follows:

JOHN SMITHJILL SMITH

You will not be able to read the two names into separate variables with
an INPUT#n statement.

To avoid this, place an explicit cOITllla after every string embedded in
a PRINT# statement. For example,

PRINT#l,A$; 11 ,";B$

will allow you to retrieve A$ and B$ individually with an

INPUT#! ,A$,B$

more thi ngs/3

To write strings which include co11111as and/or carriage returns, put quotes
around the string by using CHR$(34). For example :

PRINT#l,CHR$(34};A$;CHR$(34)

Experiment with these techniques, and then use the DISKDUMP program to
examine exactly what was written to the file.

6. The only currently available Radio Shack SYSTEM tape that can now be
loaded under DISK BASIC or DOS and then placed on the diskette for
later use is the RENUM program.

First load and dump RENUM to disk using TAPEDISK. Then to use RENUM ,
type RENUM !ENTER\

BASIC2 IENTERI
and answer the memory size? question with 31819. You can use the program
in LEVEL II BASIC.

7. If you are able to define a distinct, repeatable problem which you are
not able to solve, write down the exact circumstances (machine configuration
and sequence which causes the problem) and the following office will make
every effort to find the solution. This does not include customer pro
grarrming errors, as we do not have the facilities to do this now .

TRS-80 Problems Desk
1100 One Tandy Center
Fort Worth, TX 76102

Announcements of new versions or releases will automatically be sent to
you.

THINGS YOU SHOULD KNOW

1. TRSDOS and DISK BASIC require l0K of RAM collectively.

2. After an INPUT# is performed from cassette, subsequent READ statements

will automatically RESTORE data each time a READ is performed. To

fix this, simply perform the statement POKE16553,255 before the first

READ is performed.

3. When perfroming an INPUT# from cassette, the maximum number of byte

which can be read is 248. This does not affect disk operations.

4. If the RESET button is pressed when the expansion interface is attached

to the TRS-80, any programs in memory will be lost .

S. If a BASIC program is stopped during execution, and alterations are

made to the program, or EDIT mode is entered, then ALL VARIABLES will

be set to zero. The program must be RUN again from the beginning.

6. If an LPRINT or LLIST is performed without a TRS-80 lineprinter being

attached, the computer will "freeze-up". The user must press RESET

or attach a lineprinter and turn it on.

7. All functions in LEVEL II BASIC always return single precision value

(6-7 digits of accuracy). All trigonometric functions use or return

radian angles . Use of degrees angles are described in the LEVEL II

BASIC MANUAL.

8. All machine language programs currently available through Radio Shack

will not function properly when used with DISK BASIC.

9. Frequent occurrences of SYNTAX errors may be caused by one of two

subtle errors.

a) If a letter or the at-symbol (@) were typed with the SHIFT key

depressed, the letters will appear to be correct on the screen,

but are really invalid. Try retyping the line, and beware of

the SHIFT key.

1

b) Sometimes a space is required in a BASIC statement. All

the following lines are incorrect

IFD < 0D•0
FIELD#l,20ASC$

The characters "OD" represent a double precision zero . "ASC"

is a BASIC reserved word. The correct statements read (note

the space and THEN)

IFD < 0 THEN D•0
FIELD#l,20AS C$

10. The format of a CLOAD? command to verify from cassette #2 is

CLOAD#-2,?"filename"

11. If the pressing of a key frequently causes multiple letters to

be typed, the plastic key should be removed and the contacts beneath

cleaned. Replace the plastic key when finished.

12. TRS - 80 owner may phone Radio Shack ComputeT Services for answers to

questions.

(817) 390-3583

~r letters may be written to:

ATTN: HUGH MATTHIAS
Radio Shack Computer Services
P.O. Box 185
Fort Worth, TX 76102

2

LEVEL II DISK BASIC and TRSDOS

GENERAL INTRODUCTION

With the addition of your TRS-80 Disk Operating System (called

TRSDOS), you now have three distinct yet related modes on your micro

computer.

1) LEVEL II BASIC

This is the same LEVEL II BASIC as described in the LEVEL II

BASIC Reference Manual and is still available to you.

2) DISK BASIC

With the information on the TRSDOS system floppy disk, your

normal LEVEL II BASIC is extended into DISK BASIC, which can

read/write data files and load/save programs to disk.

3) TRSDOS

The Disk Operating System oversees operation of your disk drives,

and provides powerful utilities such as copying one diskette to

another, or listing all programs stored on a diskette.

The use of mini-disks will greatly expand the versatility of the

TRS-80. Disks provide a fast and efficient method of accessing programs

that would otherwise be stored on tape . They also provide a convenient

method of storing data .

Data is accessed by DISK BASIC by either RANDOM or SEQUENTIAL

methods. Sequential access methods are very similar to LEVEL II BASIC

statements for storing data onto tape. RANDOM access may take a little

longer to master but, the versatility and control it allows will make

its use well worth the extra time devoted to learning it.

3

POWER UP AND OPERATING MODES

The Disk Operating System and DISK BASIC are stored on the System

Diskette. This diskette is labelled TRSDOS and MUST always be in drive

0 (the drive closest to the expansion interface). Not all of DIS K BASIC

or TRSDOS are needed in RAM memory at the same time, therefore, the parts

that are needed are copied to RAM when they are called for. This is why

the TRSDOS diskette must be in drive zero at all times .

Turn on the power to the expansion interface and the disk drives.

Gently insert the TRSDOS diskette into drive 0 . Now press the power

button on the back of your TRS-80 keyboard. The Disk Operating System

will automatically load to RAM from drive 0. When this sequence is

complete, the computer will respond:

TRSDOS-DISK OPERATING SYSTEM-VER 2.0

DOS READY

This is the command level of the Disk Operating System (DOS). Under

this level, you are actually in a "system" mode and can perform the

functions described in section 3 of this manual. Pressing the RESET

button at anytime will return you to this point.

To use LEVEL II BASIC (without DISK BASIC extension), simply t ype :

BASIC2 and (ENTER)

The computer will respond with:

MEMORY SIZE?

LEVEL II BASIC will now operate as described in the LEVEL II BASIC

Reference Manual. Pressing RESET will return you to TRSDOS, and be

sure to save any program before doing so or they will be lost. However

you will probably want to use RADIO SHACK DISK BASIC. The command

BASIC, when typed in after the DOS READY command will load DISK BASIC

4

into memory.

At this time you must specify the maximum number of files that will

be open (in use) at the same time. DISK BASIC asks:

HOW MANY FILES?

Respond with the maximum number of files you wish to use. You may not

use any more than 16 files at once. Each file you ask for sets aside a

256 byte buffer (more on buffers in sequential/random file usage). So

a request of 4 files will reserve about lK of memory. You can specify

a default value of 3 files by pressing (ENTER).

The next question is :

MEMORY SIZE?

Respond with the highest address (in decimal only) availiable to DISK

BASIC or press ENTER and DISK BASIC takes all memory it can find .

If at any time you wish to return to the Disk Operating System

from DISK BASIC, type:

CMD"S"

The computer will respond with DOS READY. If you are in DISK BASIC, be

sure to save any programs on tape or disk, BEFORE you return to TRSDOS

or your program will be lost.

DISK DRIVES

The TRS-80 allows up to 4 mini-disk drives. The drives are numbered

0 to 3. Drive O is located on the cable closest to the expansion

interface. If other disk drives are used, they are numbered sequentially

(up to 3) as they occur on the cable. Disks will be referred to by

their drive numbers in this manual .

5

DISKETTE CARE AND HANDLING

Diskettes are simply sheets of magnetic recording material

specially prepared for use in the computer system. Diskette are

particularly vulnerable to abuse and great care should be exercised

when handling them. When not in the drive itself, the disk should

be placed in its protective sheath. The user should avoid touching

the recording surface exposed by the oval window in the paper cover.

As in all recording material, the diskettes should be protected from

dust, high temperatures and magnetic fields.

You may physically prevent a disk from being written on by "write

protecting" it. This done by placing a small piece of tape (write

tab) over the square notch on the mini-floppy. This will prevent any

future recording on the mini-disk until the tape is removed from the

notch.

Only one side of the TRS-80 mini-disk is used to record information.

When placed in the drive, the square notch should be on the upper edge

and the label opposite the red indicator light.

PHYSICAL DISKETTE FORMAT

TRSDOS mini-disks are formatted with 35 concentric circles where

data is recorded. Each circle is called a "track". Each track is

evenly divided into 10 sections called "sectors". Each sector contains

room for recording 256 bytes of information. So each track contains

2560 bytes and each mini-disk contains 89600 bytes. TRSDOS can copy

information from/to memory at a rate of 12.5K bytes per second. Not

all 89K of the mini-disk are for your use. TRSDOS keeps a directory

on each diskette so that the sectors related to a program or data file

are known. This leaves the user about 85K of free space. The TRSDOS

system diskette has SSK of free space on it.

6

MEMORY SIZE

TRSOOS

DISK BASIC

files

4.2K RAM

5.8K RAM

A 256 byte buffer must be reserved for each

file, and some extra overhead space for a total

of about 280 bytes per file.

7

DISK BASIC

Radio Shack Disk Basic adds several non disk related statements

to the interpreter. The additional LEVEL II statements and functions

provided by the mini disk are:

MID$ (left side of equation)

INSTR

TIME$

USR (USR0-USR9)

DEFUSR

Hexadecimal and Octal Constants

LINE INPUT

DEF FN

CMD"D"

CMD"T"

CMD''R''

8

MID$

MID$ can be used on the left side of an equation to replace a

substring in an indicated string. The general format is similar to

the format used for MID$ on the right of an equal (or relational)

sign.

MID$ (string #1, I,J) E string #2

This will replace a portion of the "string" beginning at position I

for J characters with the string indicated by "string #2 " . J is

optional value. If J is not expressed, the string will replace the

portion of "string #1" beginning at I for the entire length of string

#2 or to the end of string #1 whichever is smaller. This limitation

precludes any changes to the length of string #1 .

Example:

10 INPUT "STRING 1 -- STRING #2 -- START -- LENGTH";B$, L$, S,K

20 MID$(B$,S,K) = L$

30 PRINT B$

40 GOTO 10

RUN

String 1 -- String #2

AXYD

Start -- Length? ABCD, XY, 2,2

String 1 -- String #2 -- Start -- Length? 1901 DAKAR ST. W., RD, 12,2

1901 DAKAR RD. W.

String 1 -- String #2 -- Start -- Length? GO BRONCOS GO, COWBOYS, 4,7

GO COWBOYS GO

9

INSTR - This is a string function which searches for the occurrence of

one string within another string. INSTR will return the starting position

of the occurrence . (This function replaces the INSTRing subroutine given

in the LEVEL II manual.) The general format of INSTR is :

INSTR (I, string #1, string #2)

This will search for the first occurrence of string #2 in string #1

and if a match is found, the value returned will equal the starting

position of the match.

I is an optional parameter which specifies the position in string #1

where the search is to begin. If I is greater than the length of string

#1, or string #1 is null, or no match is found, INSTR returns a 0. If

string #2 is null, INSTR returns I (if specified) or 1.

·TIME$ - This is a 17 character string containing the date and time.

The date and time are initialized by the DATE and TIME utilities of

the DISK OPERATING SYSTEM. (see DOS UTILITIES chapter) The format of

TIME$ is "MM/DD/YY HH :MM: SS" . To print the time on the 1 ine printer type:

LPRINT RIGHT$(TIME$,8)

To print the date in the center of the screen type

PRINT @540, LEFT$(TIME$,8)

NOTE : When the real time clock is stopped for tape loading (see CMD"T")

TIME$ will not be updated by DOS. CMD"R" restarts the clock.

DEF FN - User defined functions

DEF FN designates a variable as a function

DEF FN variable name (variable list)• expression

The variable name will be the name of the function. The name can

consist of any number of characters, however, the first character must

10

be alphabetic and only the first two characters will be recognized

(_as in variables). The "variable list" consists of the variables that

are to be used in the function. These may be any number of legal

variables, separated by a comma, depending on the number of arguments

needed by the expression. The expression is the function itself.

These may only be one logical line or statement in length. (Statements

separated by colons are not allowed.)

For example:

10 DEF FNMLT(X,Y)=X*Y

20 INPUT A,B

30 C==FNMLT(A,B)

40 PRI NT C

The function MLT multiplies two arguments. Line 30 takes the values of

A and B, passes them to the user defined function in line 10 which

multiplies them, and stores the result in C.

Strings may al s o be manipulated by functions. For example :

10 DEF FNADD$(A$,B$) = A$+" "+B$

20 INPUT"ENTER FIRST NAME";X$

30 I NPUT"ENTER LAST NAME";Y$

40 Z$=FNADD$(X$,Y$)

50 PRINTZ$

In this example a dollar sign($) was added to the function name indicating

a string function. This is necessary because, just like variables,

functions must indicate which variable type is to be returned - single(!)

or double precision (#),integer(%), or s tring ($). The default is

single precision.

The usefulness of the DEF FN statement becomes apparent when a

particular function is used several times in a program. This will save

time and memory space when performing repet i tive operations .

11

HEXADECIMAL and OCTAL CONSTANTS - In some functions it is more convenient

to use HEX (pase 16) or OCTAL (base 8) constants rather than decimal

numbers. These number bases are specified by the following symbol(s):

Octal - l (octal constant)

HEX - l H (hexadecimal constant)

For example:

POKE &H4 2E9, & HFF

would POKE the hexadecimal constant FF (255 decimal) at location 42E9

HEX (17129 decimal). Hex and Octal constants may not be used in response

to INPUT statements or in DATA statements.

USR - The USR function has been expanded to allow up to 10 machine

language user routines. The routines can be assembled using the TRS-80

Editor/Assembler program and loaded under the SYSTEM command or the

object code can be loaded from the keyboard using the POKE statement.

DEFUSR has been provided to assign the starting addresses for the routines

rather than POXEing the address in a user location as described in the

LEVEL II manual.

The general format for calling a USR routine from a BASIC program

is:

USRn(arg)

n is an integer value from Oto 9 and represents the routines assigned

with the DEFUSR statement (see DEFUSR). This number will call one of

the ten possible user routines. For example,

X•USR3(0)

will call user program #3. If a value is to be returned directly by

the routine, X will contain the value produced.

As in normal Level II operations, user routines in Disk Basic are

protected using the MEMORY SIZE option given at power up.

12

DEFUSR - Is provided to assign entry points to USR routines. This

statement replaces the user location - POKE - method described in

the Level II manual. The general format of the function is:

DEFUSRn = addr

n may be any number from Oto 9 representing the 10 possible USR

routines. Addr is an integer value indicating the starting address of

the USR routine. 7. For example:

DEFUSR7 = IH 70E9

would assign USR7 a starting address of 70E9 HEX .

For example: This program will print the numbers from 1 to 100 and

then call a machine language subroutine (line 100) to "White out" the

screen. The machine language routine is POKEd into memory from the

data statements

10 DEFUSRl = t H7D00

20 FORX=32000 TO 32013

30 READ A

40 POKE X,A

SO NEXT X

60 CLS

70 FOR X=l TO 100

80 PRINT X;

90 NEXT X

100 X•USRl(0)

110 FOR X=l TO 1000

120 NEXT X

130 GOTO 60

140 DATA 33,0,60,54,255,17,1,60,l,255,03,237,176,201

13

PASSING ARGUMENTS TO AND FROM USR ROUTINES - There are 2 ways to

communicate from BASIC to machine language subroutines.

1. POKE the arguments into fixed locations in RAM and, after

the subroutine does its work, PEEK the results back into BASIC.

2 . Pass the argument as part of the USR function while using

routines in BASIC to do the number conversions .

This example will give subroutine the value stored in X and return a

value in Y.

BASIC
10 DEFUSRS= H7D00

20 INPUT X

30 Y = USRS(X)

SUBROUTINE
CALL 0A7FH

JP

main body of
subroutine

0A9AH

Define entry point to user subroutine

Number Sas 7D00 (hex)

At this point control is passed to the
subroutine

this is a routine in ROM which will take
the value of X (the argument in line 30)
convert it to an integer and store it in HL

this is a routine in ROM which will take
the value in HL and pass it to the calling
Basic program as the new value of USR. In
the above example Y = value of HL

CMD"T" - Time Out - This command must be used, either in the command

mode or within a program, before any tape operations. CMD"T" turns

off the REAL TIME CLOCK so timing sensitive tape commands will not be

interrupted. Commands affected on CLOAD, CSAVE, INPUT#-1(-2),SYSTEM

(filename)

CMD"R" - Res tart Clock - Use this command to restart the clock after

tape operations.

Example:

10 CMD"T"
20 INPUT#-1, A,B,C
30 CMD"R"

turns off clock

turns on clock
14

CMD"D" - This command loads the DOS debugger. See the DOS UTILITIES

section, DEBUG command.

CLOAD? - This verify routine is not available under DISK BASIC for

comparing programs CSAVEd under LEVEL II. A "BAD" message will always

result. Programs CSAVEd under DISK BASIC will verify correctly.

Line Input - Causes all characters typed in to be assigned to a string

variable. This is used when commas, quote marks or other delimiter may

be input, as in names, addresses, etc.

Line Input "prompt string"; single variable

eg. 10 LINE INPUT "ENTER YOUR NAME";N$

would cause all characters typed in up to an (ENTER) to be assigned to

N$ even though the name may contain a comma. A question mark is not

printed unless it is part of the prompt string.

CLOAD may not be used with a file name under Disk Basic. For example

CLOAD"A" may cause the computer to hang up. To load from tape, use

the following sequence:

CMD"T" turn off clock

CLOAD

CMD"R" restart clock

CSAVE still requires a file name

15

RADIO SHACK LEVEL II DISK COMMANDS

The commands used with the disk system facilitate the control

of di s k operations. They initiate and terminate disk operations and

specify the types of files to be used. They al s o control files in

much the same way Level II Basic commands control programs .

LEVEL II Disk commands are:

OPEN

CLOSE

SAVE

LOAD

MERGE

KILL

CMD"S"

RUN"filename"

16

FILE NAMES

Throughout this manual references are made to filenames. These

names can always consist of up to 4 descriptors, the name itself, a

file extension, a password, and a drive number; in that order . All

but the name itself are optional.

The name can be from 1 to 8 alpha-numeric characters with the fir s t

character being a letter. Example:

MASTERIN

PAYEMP25

DOLLAR

z

XYZ123

The file extension can be from 1 to 3 alpha-numeric characters

and is used to identify a file type. File extensions must be preceded

by a slash (/). If it is not specified, the operating sy s tem us e s

blanks for the file extension.

Example:

/CMD

/OBJ

/SYS

/DAT

/BAS

could indicate

could indicate

system file

data file

basic program

a command file

an object file

file

If a file extension is non-blank, it must be specified for all disk

operations involving that file.

The file extension is listed beside the file name by the "DIR"

directory command.

The password is a file protection feature. It can be from 1 to 8

alpha-numeric characters. If a password is assigned when a file is

created by an OPEN statement then that password must always be provided

for subsequent disk operations. Without the proper password a file

may not be read, copied, opened, or deleted. BE CAREFUL!!! If you

forget the password, you will never be able to use that file again.

All passwords are preceded by a period. Examples:

.CRIMSON

.SKY

.XMASTREE

The drive number is a digit from Oto 3 preceded by a colon. It refers

to a particular disk drive (drive 0 is the disk closest to the expansion

interface, drive 3 the furthest). Unless a drive number is specified

for new files, that file will be written on the lowest numbered drive

in the system with available space and not write protected. If no

drive is specified for input files, the operating system will search

each drive for the requested file, the only los s is access speed .

Examples:

: 3

: 2

drive 3, the last on the cable

drive 2, the second to last one

These are examples of file names using various combinations of descriptors.

MATHTEST/BAS . TEACHER:2

the file name is MATHTEST and is a BASIC program file

the password is TEACHER and is located on drive 2

INVT : l

the file name is INVT · and it is on drive 1, no e_xtension

is given and no password is required

PAYROLL/DAT.IRS

the file name is PAYROLL and it is a DATA file, the password

is IRS and you don't know which drive it is on. The drives

are searched in numerical order until one is found which has

18

space and is not write protected. That drive will be used.

You may have two files with the same name as long as some part

of the file name (extension, or drive number) distinguishes it. For

example, all the following files are uniquely different.

FILE:1 FILE/BAS:!

FILE/BAS:0

FILE:0

FILE/SYS

FILE/OBJ

The password will not make a filename unique. If a program is

saved a FILE/BAS and then another attempt is made at saving the same

program as FILE/BAS.PASS an FILE ACCESS DENIED error will occur. The

password does not uniquely differentiate a file. A password only places

a protection on a file when it is saved.

19

MINI DISK COMMANDS

The OPEN command must be used before any disk reads or writes

for data files; this data does not apply to program saves and loads.

The format for using the OPEN command is as follows:

OPEN "mode", # f i lenumber, "filename"

The mode specifies the type of file. The following modes are used :

MODE DESCRIPTION

0 Output mode for sequential files - write to disk

I

R

Input mode for sequential files - read from di s k

Input and/or Output for Random files

Files numbers are used to identify a file that is opened. In later

Input/Output operations, this number is used to identify the file and

options rather than the name, mode, disk # , etc. Filenumbers are integer

and range from 1 to 16 . This means that 16 files may be opened at one

time and used in different operations by using the fil e number given in

the OPEN statement.

Filenumber correspond to the number of files requested with HOW

MANY FILES? If you requested 6 files then your filenumber may only

be the numbers 1 through 6 . Likewise, the default of 3 files only

allows you the filenumbers 1, 2, or 3 . The# sign above i s optional in

the OPEN statement. No two OPENed files may have the same file number,

but filenumbers may be changed by CLOSEing the file and reopening with

a different file number.

The filename is an alphanumeric string which was used to identify

the file when it was stored on the disk (or to name a file that you

will be creating).

Example of OPEN statements:

20

OPEN "0", 1, "OUTPUT"

OPEN "I",2,"INPUT"

OPEN"R",3,"FILE:l"

OPEN D$, X, N$

In the fourth example. variables are used to form the OPEN statement.

It is standard to insert OPEN into programs by giving it a line

number . A file should only be opened with one mcde at a time. Attempts

to open a file with a filenumber already in use will cause a FILE

ALREADY OPEN error .

CLOSE - CLOSE will terminate access to a specified file by closing out

I NPUT/OUTPUT to the file . The format is:

CLOSE filenumber, ... ,filenumbc r

Examples: CLOSE 1, 2, 6

Closes file indicated by 1, 2, and 6

The file numbers are optional. If CLOSE is used without filenumbers,

all open files will be closed.

A CLOSE issued to a sequential output file will write the final

buffer and CLOSE the file.

A NEW command will automatically close all open files as well

as deleting the program and variables resident in the computer. All

files must be closed before changing diskettes on a particular drive.

KILL - KILL deletes a disk file . This will release the space us ed by

the old file for a new one.

KILL"filename"

Example : KILL"DATAFILE"

A file must be CLOSEd before you attempt to KILL it. A file that is OPEN

(see OPEN) cannot be deleted (a "FILE ALREADY OPEN" error will occur if

21

this is attempted).

MERGE - The MERGE command combines a resident program with one located

on disk. The incoming program overlays the resident program and replaces

any lines having the same line number. This edits the resident program

by replacing lines with the program coming in from the disk . The

general format is:

MERGE"ftlename"

Example:

MERGE"ADDPl~OG"

The file mu:.; t have been saved using the "A" (ASCII Format) option described

under SAVE.

SAVE - Programs may be saved on disk using the SAVE command. This

operation is performed using the following statement:

SAVE 11filename"

Example:

SAVE"PRGRMl0"

This will store the program and delete any programs of the same name.

Therefore, if you edit or update a program, the current program will

replace the old one.

Programs are normally stored using a compressed format. This is

done automatically by the computer . Programs can be stored using an

ASCII format by specifying the "A" option . This is used when program

text is to be read in by another program (either MERGE or LINE INPUT).

An example of such a program might be a routine to renumber lines in

another program. To specify the ASCII option, use the following

format.

SAVE"filename",A

22

Example:

SAVE"PRGRM20,A

Programs saved in ASCII will transfer more slowly than files stored

in the normal binary format.

LOAD - This command loads a program stored on a disk into memory. The

LOAD command uses the following form:

LOAD"filename",R(optional)

Example:

LOAD"PRGRM30",R

This loads the program specified from the disk drive specified and

executes the "R" option.

The "R" option specifies the program is to be loaded and RUN.

When a LOAD is issued without an R option all files are automatically

closed and all resident memory is deleted (like NEW). If the R option

is used all data files are kept open and only program lines and

variables are deleted from memory.

RUN"FILENAME"

The command performs the same function as the LOAD command with

an R option specified . The following command are equivalent:

LOAD"PROGRAM",R

RUN"PROGRAM"

CMD"S" - This command will return control to the disk operating s ystem.

When this command is used in BASIC the computer will respond:

DOS READY

23

SEQUENTIAL DISK DATA FILES

Sequential input and output is the simplest form of disk data

storage. The statements are very similar to one used for tape storage.

The statements used in sequential I/0 operation are:

PRINT#

PRINT USING

INPUT#

LINE INPUT#

EOF

PRINT/# - Is used to write data to a sequential output file . The format

is very similar to the statement used in the PRINT statement for creating

cassette tape files.

PRINT# file number, variable or exp.; ... ; variable or exp.

This will write the data specified in the variable/expression list to

the file indicated by the file number. The file number is the one

specified in the OPEN statement for that file.

Example: PRINT#l,A;A$;Z;A$;LEFT$(Z$,S)

This will write the specified information to the file indicated by

filenumber 1. ASCII characters can be inserted using the CHR$ statement

and ASCII codes. This method is used when a string contains characters

or control characters other than alphanumerics such as com.mas, linefeeds,

eg/ PRINT#!, CHR$(34);X$;CHR$(34)

If the string is alphanumeric only -- com.mas can be inserted

PRINT#!, A$·" "·B$·" 11
• ' ' ' , ' , .. .

PRINT USING - Allows you to write to a sequential file using a specified

format. The formats are indicated by the format specifiers used in the

BASIC PRINT USING statement. The format is:

PRINT#filenumber,USING"format";Variable/expression list

24

Example: PRINT#l,USING"**$###.##";121 . 129

will print *$121.13 to the disk file.

INPUT# - Used to read back sequential data written by the PRINT#

instruction.

INPUT# filenumber, variable, variable

This will read data from the disk into the specific variables. The

file number is specified at OPEN time.

Example:

INPUT#3,A,B,C

This will read data from the disk assigning A to the first value read,

B to the next etc.

There are some important differences between disk and tape files.

When PRINTing strings, it is necessary to separate them with explicit

commas as below in line 30.

10 OPEN"O",l,"NAMES"

20 A$•"JOHN":B$="SMITH

30 PRINT#l,A$;",";B$

40 CLOSE:OPEN"I",l,"NAMES"

so INPUT#l,A$:PRINTA$

60 CLOSE:END

When this program is run it will print JOHN . If line 30 were

PRINT#l,A$;B$ then this program would print JOHNSMITH. The commas are

needed between strings so Disk Basic will know where a string ends and

begin . If you forget the commas you could easily get a READ PAST END

FILE error. Note the commas are not needed between numeric values.

PRINT#l,A;DC;B is a valid statement.

Anoth~r difference is that PRINT# statements need not correspond

exactly to the INPUT# statements. With tape operations, a PRINT#-1,A,B,C

requires an INPUT#-1,A,B,C to read the three values. This is not so

with disk. Observe the following program:

10 OPEN"O",l,"DATA"

20 A=l:B=2:C•3:D=4

30 PRINT#l,A,B,C,D:CLOSE

40 OPEN"I",l,"DATA"

so INPUT#l,A,B,:PRINTA,B,

60 INPUT#l,A,B:PRINTA,B: LOSE

> RUN

1 2 3 4

NOTE that the PRINT on line 30 does not match the two INPUTs on lines 50

and 60. Yet the program works correctly .

In order to simulate a RESTORE command for a disk file it is necessary

to CLOSE the file and then reOPEN it again. This sets all reading

(INPUT#) back to the beginning of the file.

LINE INPUT - Will input any string from disk or the keyboard, ignoring

commas or quotes until a carriage-return or 255 characters are read.

From the terminal, Input will be requested without a question mark being

typed. You may type quotes ("), commas (,), or linefeeds (~) until

an ENTER is typed.

10 CLEAR 300

20 LINEINPUT A$

30 PRINT A$

Try the above program with linefeeds and commas. Note that a BREAK

will stop the program during a LINE INPUT.

26

The following program will read itself off of disk and list itself

on the monitor screen.

10 CLEAR 500

20 OPEN"I",1,"PROG"

30 FORI=lTOS

40 LINEINPUT#l,A$

SO PRINT A$:NEXT

) SAVE"PROG",A

) RUN

Be sure to SAVE the program as an ASCII file before running it. The

formats for LINE INPUT are:

LINE INPUT string variable (keyboard)

and LINE INPUT#filenumber, string variable

EOF - Denotes the end of a file. When inputing data from a disk file,

this will detect the end of the data file. The EOF works as a logical

function to test for the last record of the file. It can be used in two

ways:

Variable~ EOF(file number)

eg/ X=EOF(l)

assigns X a -1 if no more data, 0 if more data in file. It can be also

used with an IF statement.

IF EOF(l) GOTO 999

If end of file then branch to 999, if not continue on the next line.

Example:

10 OPEN"I",l,"FILEl"
20 FOR X=l TO 20
30 IF EOF(l)THEN 60
40 INPUT #1,A(X)
SO NEXT
60 PRINTX;"RECORDS READ"
70 CLOSE

27

Files are automatically allocated 2K. If more space is used, another

2K is allocated etc. Therefore, the minimum space allocated for a

file is 2048 bytes (~K), and files always acquire memory 2K at a

time instead of smaller units (bytes at a time).

28

RANDOM FILES

Random files offer two distinct advantages over sequential files.

Sequential accesses require record by record data search, where Random

accesses provide immediate retrieval of desired data. Sequential data

is stored ASCII format while Random data is stored in a compressed

binary format. Sequential files may only be opened in an input or output

mode, while a Random file may be written to or read from at will. Data

can easily be read, modified, and written back to disk, changing old

information.

A 256 byte record is the primary element in a random file. A file

can contain as many as 329 of these records. A record number between

1 and 329 is associated with each record. This serves as the record

identifier and all attempts to read or write records include this identi

fier. Of course, the first record in the file has a record number of 1,

the second of 2, and so on. If you wish to access any record in a file,

all that is needed is its record number for immediate access to that data.

Random records are read and created in a BUFFER. A buffer is a 256

byte area of memory where records are built one variable at a time. The

buffer is then written onto disk. The reverse is true for reading

random records. The buffer is filled from disk then variables are pulled

from the buffer one at a time.

This breaking up of the buffer into variables and pulling out data

is called "fielding". An example will clarify this. Suppose a file

is to contain a mailing list of names and addresses. Record one contains

the following:

ATKINSON MIKE 1000 JACKRABBIT SCOTTSDALE AZ

If this information were read from disk into the buffer, how do we

know where the name starts, and the address begins? The answer is that

you MUST know and MUST inform the computer. Using a FIELD statement

29

the computer is informed of the format of the data.

OPEN"R",2,"MAIL"

FIELD#2,20AS N$, 25 AS AD$, 15 AS CT$, 2 AS ST$

This FIELD statement specifies the format for file #2 as having the

first 20 characters referred to AS N$(name), the next 25 characters

referred to AS AD$(address), the next 15 characters referred to AS CT$

(the city) and the next 2 characters AS ST$ (state). In general the

FIELD statement specifies the length of each item within a record and

which string variable they are assigned. Be careful with s tring variables

used in a FIELD statement . As you will see, they must be treated

differently than usual string variables.

If the lengths of each item are added together the total length of

the data is 20+25+15+2=62 characters. But if the buffer i s 256 characters

long, what are the other 194 characters doing ? They are wasted! Eac h

time a name and address are PUT onto disk 194 bytes are unused. Thus

three-fourths of the files are wasted. Later a method will be shown to store

four addresses in the buffer at once. This would waste only 8 characters

out of the 256 byte buffer.

The following is a picture of the buffer and a FIELD statement

and how they interact.

FIELD#2,20 AS N$, 25 AS AD$, 15 AS CT$, 2 AS ST$

20 bytes 25 bytes 15 bytes 2 bytes 194 unused bytes

Buffer for file #2 (256 bytes total)

30

All variables in the buffer are stored as strings. There are

special commands in DISK BASIC to convert integers, single precision,

and double precision numbers to strings and back to numbers again.

Integers in the range of -32768 to +32767 are stored as two byte

binary numbers. Therefore, when converted to a string, these will be

stored as two byte s trings in the random data file.

Single precision numbers are stored as 4-byte binary numbers.

They are converted to 4 byte string when stored on the disk.

Double precision numbers require 8 bytes and therefore require

8-byte strings to store them.

This will become impo~tant when you are dividing the buffer into

fields . Integer values will be fielded 2 bytes, single precision 4

bytes and double precision will be assigned 8 by tes for storage.

31

CREATING RANDOM FILES ON DISK

Files are created by placing the appropriate data in the buffer and

then storing the contents of the buffer on the disk as a record. Since

each record is assigned a number, any record can be accessed individually

by referring to its record number.

The first step is to OPEN the file under the R(Random access) option.

OPEN "R", filenumber, "filename"

As in sequential access, the filenumber is used to refer to a particular

data file. This will also assign a buffer to the file for use in accessing

the disk file from your program.

FIELD - The next step is to divide the random buffer into segments, which

will hold the particular elements of data. Each FIELD statement refers to

a "type" of record. If all the records on a disk will look alike, only one

FIELD statement will have to be used for all the records. The best way to

determine the fields for a buffer is to write down a representative record

and determine the maximum length for each element. Suppose we wished to

store information in a file which contained a NAME, ADDRESS, PHONE NUMBER,

ID NUMBER and a DOLLAR AMOUNT. A representative record might look like

this:
MAXIMUM TYPES

DATA NUMBER OF BYTES NUMBER OF BYTES OF DATA

JOHN DOE 8 20 string

999 w. 8TH AVE 15 20 string

999-9999 8 8 string

1056 2 2 integer

132.84 4 4 single precision

Since most names are longer than 8 characters, the field should be long

enough to contain most long names (20 characters is standard). The

32

general format for the field statement is:

FIELD# filenumber, field size AS buffer string variable, . .. ,

f ield size AS buffer s tring variable

A pound sign(#) is optional before the filenumber.

The FIELD s tatement for the example would be:

FIELD 1, 20 AS NAM$, 20 AS ADR$, 8 AS PH$, 2 AS NI$, 4 AS NS$

More than one type of FIELDed data can be used in the same data file.

This is done by refielding the buffer by executing another FIELD statement.

If several different field s are used in the same file or program, it is

convenient to put the field statements in subroutines and execute them

when a particular type of data is being sent . This will be shown shortly.

Don't let the FIELD statement trick you! The buffer i s 256 bytes

long but remember that BASIC only allows a s tring t o be 25 5 bytes. Thus

the following is illegal

FIELD 1, 256 AS Q$

or

FIELD 2, 128 AS Q$, 128 AS R$

Note that no individual field may exceed 255 by tes and that the sum of

the lengths of all elements may not exceed 25 5.

Moving Data to the Buffer - After the buffer has been FIELDed, you then

place the appropriate data in the fields. Several statements facilitate

and control thi s transfer.

STRINGS - LSET and RSET -- Strings are placed into the buffe r using two

statements, depending on whether you want the string right or left justified.

A left justified s tring i s one tha t stans from the le f t and fills the

field to the right. I f the string i s l onger than the f ield, the rightmos t

33

position of the string will be lost. If the string is smaller than

the allotted field, it is "padded" with blanks on the right. A right

justified string is just the opposite . The field is filled from right

to left and padded with blanks on the left if smaller and cut off on the

left if larger. These assignments are made using LSET and RSET.

LSET buffer string variable= string expression

RSET buffer string variable• string expression

For example, in the Field statement, NAM$ was fielded to 20 bytes. The

field could be assigned a string using either LSET or RSET in the following

manner.

A$="DOE":B$•"JOHN"

LSET NAM$ • A$+", "+B$

The buffer field would look like this (~ represents a blank):

DOE,~JOHN~~~~~~~~~~~~~~~

RSET NAM$ •A$+", "+B$

would result in: ~~~~~~~~~~~~~~~DOE,~JOHN

NUMERIC VALUES - MK!$, MKS$ and MKD$ -- Since numbers are stored in a

RANDOM file as strings, 3 statements are provided to make the conversions

and send them to their respective fields in the buffer.

MK!$ - This function converts an integer to a two byte string and s ends

it to its assigned field in the random buffer. The general format is :

MK!$ (integer or integer variable)

For example, assume the variable NI$ has been fielded for a two byte

integer string: to convert the integer to a two byte string and place

it in the field we could write:

A\ = 9999

LSET NI$= MKI$(A\)

34

This would convert the contents of the integer variable A\ to a

two byte string and field it in NI$. The integer value must be in the

range of -32768 to +32767. Either LSET or RSET must ALWAYS be used

wnen moving anything to the buffer.

MKS$ - This function converts single precision values to a 4 byte string.

and places it in the indicated field in the buffer . The general form

of the statement is:

MKS$(single precision variable or value)

If the 4 byte FIELD was defined by NS$ the statement might look like this:

A!= 9999.99

RSET NS$= MKS$(A!)

This would convert the single precision number indicated by A! to a 4

byte string and place it in the field specified by NS$.

MKD$ - This function converts a double precision value to an 8 byte string

and places it in a specified field. The format is:

MKD$(double precision variable or value)

Example : if the 8 byte field was indicated by ND$

A#•3.141592625DO

LSET ND$= MKD(A#)

would convert the double precision value indicated to an 8 byte string

and place it in the buffer field indicated by ND$.

PUT - The statements we have described so far, set up the buffer and

place information in it. When the buffer contains the information you

wish to store as record on the disk, a single statement is executed to

transfer the contents of the buffer to the disk file. The PUT statement

assigns the data in the buffer a record number and stores it in the

specified file. The format is:

35

PUT filenumber, record-number

The filenWllber indicates the file which was opened to contain the data

and the record number is the number assigned to one of 329 records. The

record number is optional. If the record number is not specified, the

data in the buffer will be initially written to record 1 and thereafter

the records will be written into the next record number in increments of

one when each PUT is executed.

Example:

PUT 1

When a record is PUT, the disk space for all record numbers from 1 up

to the record nuaber use is reserved. Thus a PUT 1, 350 will cause

a DISK FULL error even though only one record of meaningful data was

written. This is because space for records 1 through 349 was set aside.

LOF - This function will return a value indicating the last record number

in a given file. It is especially useful when adding records to a file

that was previously . constructed. The general format of the LOF statement

is:

LOF (filenuaber)

Exuple:

PRINT LOF(l)

will return a value for the last record in file 1. This prevents reading

past the end of the file and reading meaningless characters into the buffer.

36

RETRIEVING DATA FROM A RANDOM FILE

Getting data back from a random data file is very similar to the

methods used for storing it. However, the process is reversed.

FIELD - This statement is used to prepare the buffer for data coming

in from the data file. (The format for the FIELD statement is identical

for the field used for storing the data)

FIELD# filenumber, field size AS buffer string variable, ... ,

field size AS buffer string variable

The same field statement can be used to retrieve the data from disk

as the one used to store it there (or one identical to . it} if the data

is to be read in the same manner it was written. However you may read

data in a different format than the one used to store it.

For example, if the first 40 characters of a record were written as

3 separate strings, they could be read back as one string:

FIELD 1, 40 AS THE$, . . . etc

In some operations, only one piece of data from a record may be required .

If the required information is at the beginning of the record, it is

rather simple to field only the required number of characters as one

variable and the remainder as another, dummy variable.

However, if the required information is located in the middle of

the record, several methods can be used to fetch the data. One method

is to assign the unneeded data preceeding the data to a dummy variable

in a field statement then field the information you want and field the

remaining data into another variable. If you had a field which looked

like :

N$ SS$
A NAME A SOCIAL SECURITY NUMBER

ID$
I . D. NUMBER

37

PH$
PHONE #

and you needed only the I.D. NUMBER(ID$) you could do this by fielding

N$ and SS$ as one string, then fielding ID$, then PH$. ID$ would then

be fielded as a separate number and could be read individually.

Suppose N$(name) and SS$(social security number) total to 25 characters.

In order to get to the ID number in the 5th record, the following program

can be used:

10 CLEAR 500:REM NEED EXTRA STRING SPACE

20 OPEN"R",2,"DATA"

30 FIELD 2,25 AS DUMMY$, 6 AS ID$

40 GET 2,5

50 PRINT ID$

This will print out the 6 character ID number from the 5th record. The

first 25 characters are assigned to DUMMY$ and not used. But this moves

through the buffer so that characters 26 through 31 can be used .

Another method would be to use the FIELD statement used when storing

the data and then inputing only the string containing the data you need

and ignore the rest .

GET - This statement is used to copy a record from the disk into the

fielded random buffer. The format is :

GET filenumber, record# .

Example:

GET 1, 100 or GET X, R

This will copy the record from the appropriate file to the file buffer.

The record number is optional. If no record numbers are used, the

first record accessed with a GET will be record 1. The next record will

be 2 and so forth sequentially until the end of the file.

PUT/GET DIAGRAM

Buffer for file #2

' V ~

~ ,
~~ PUT 2,4

.....
~

~

GET 2,4

39

Disk File

Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

"
•
I

•

RETRIEVING DATA FROM THE BUFFER

STRI NGS - Strings can be read from the buffer simply by referencing the

variable of the appropriate field. For example:

If the string AA$ was fielded into the buffer from the disk data

file using:

FIELD 1, 10 AS AA$

the string could be fetched from the buffer by using :

B$ = AA$

This would assign the contents of the buffer field AA$ to the string

variable B$. Since the original string was stored as either a right

justified (RSET) or left justified (LSET) string, B$ and AA$ will also

have the same configuration.

NUMERIC VALUES - Since numeric values are stroed as 2, 4 or 8 byte strings

(using MKI$, MKS$, MKD$); they must be reconverted to numbers when they

are fetched from the buffer. Again, there are three statements which

will handle the 3 types of numbers: integers, single precision and

double precision .

CVI - This statement will convert two byte strings representing integers

into a base 10 integer value and remove it from the buffer. The general

format is:

CVI(2 byte string)

Example :

A%= CVI(NI$)

This will convert the string represented in the field by NI$ to its

integer equivalent and store it under the integer variable A% .

An attempt to convert a string smaller than 2 bytes will result in

a FC error . If the string is more than two bytes long, the extra bytes

40

will be ignored resulting in a unpredictable value in some cases.

CVS - This function will convert a 4 byte string into its equivalent

single precision value and retrieve it from the buffer. The format is

as fol lows:

CVS(4 byte string)

Example :

A!• CVS(NS$)

This will convert the 4 byte string represented in the buffer by NS$ to

a single precision number and store it under the single precision variable

A!.

If the string is less than 4 bytes an FC error will occur. If the

string is greater than 4 bytes, the extra bytes (to the right) will be

ignored which may return an incorrect value.

CVD - This function converts an 8 byte string into a double precision

value and retrieves it from the buffer . The format is:

CVD(8 byte string)

Example:

AH= CVD(ND$)

This example will convert the 8 byte string represented in the buffer by

ND$ into its double precision value and store it under the double precision

variable AH.

41

SUB-RECORD USE

Now what does one do about wasted disk space? Referring back to

the mailing list problem there were 194 bytes unused. Since only 62

bytes are needed, there is room for four(4) records within the buffer.

Four(4) times sixty-two(62) gives 248 characters. Thus only 8 bytes are

unused per record.

Each physical record (a buffer full of data) contains 4 sub-records

numbered O through 3. At the beginning of physical record 1, the 1st

address is found. At the beginning of the second physical record is

the 5th address. The 5th address is termed as being the 5th "logical

record". Given the logical record number (ie, which piece of data), the

physical record and sub-record numbers can be calculated.

LR• the logical record number

physical record• INT((LR-1)/4)+1

sub-record • LR-4*((LR-1)/4)-1

In order to FIELD this, it appears that four separate FIELD statements

are needed. These would be:

FIELD 1, 0*62 AS D$, 20 AS N$' 25 AS AD$, 15 AS CT$, 2 AS ST$

FIELD 1, 1*62 AS D2, 20 AS N$' 25 AS AD$, 15 AS CT$, 2 AS ST$

FIELD 1, 2*62 AS D$, 20 AS N$, 25 AS AD$, 15 AS CT$, 2 AS ST$

FIELD 1, 3*63 AS DS, 20 AS N$, 25 AS AD$, 15 AS CT$, 2 AS ST$

These represent the FIELD statements for the sub records 0 through 3

respectively. Note the use of the dummy variable D$, which is assigned

the leading information that is not wanted.

Observing the pattern to these FIELD statements, a generalized FIELD

can be written if the sub-record number (SR) is known.

FIELD 1, SR*62 AS D$, 20 AS N$, 25 AS AD$, 15 AS CT$, 2 AS ST$

42

A full working program for manipulating the mailing list file MAIL

is listed below .

100 CLEAR 1000 : CLS : CLOSE
110 PR I NT : INPUT" T'T'PE 1 TO ~lR ITE, 2 TO READ 11

; N
120 OPEN 11 R" .. 1, "MAIL 11

130 CLS : ON N GOTO 200,300
2~30 PR I NT : INPUT II ENTER LOG I CAL f.'.ECORD NUMBEf.'." ,; LR
210 IF LR=0 THEN 100
220 GOSUB 500:PR=INT C(LR-1) / 4) +1
2].0 GET 1., PF~ : PR I NT II PH'T'S I CAL RECORD # =" _; PR : PR I NT
240 PR I NT" NAME" ; TAB (20); : I NPUTA$: LSET N$=A$
250 PR I NT" ADDRESS 11

_; TAB (20) ; : I NPUTA$: LSET AD$=A$
260 PR INT" CI T'T' 11

; TAB (20) ; : I NPUTA$: LSET CT$=A$
270 PR I NT" STATE 11

,; TAB (20) _; : I NP UTA$: LSET ST $=A$
280 PUT 1,PR : GOTO 200
300 PR I NT : INPUT II ENTER LOG I CAL RECOPD NUMBER 11

_; LR
310 IF LR=0 THEN 100
320 GOSU8500 : PR=INT (CLR-1)/4) +1
330 GET 1, PR : PF: INT"PH'l'SICAL RECORD # = 11 _;PR : PRINT
340 PRINT"NA~1E" _; TA8 (20) ,; ru
J'.50 PRINT"ADDRESS" ; TA8(20) ;AD$
360 PRINT"CIT'T'" ; TA8(20) ; CT$
370 PRINT"STATE" ; TAB(20).; ST$: GOTO 300
490 REM SUBROUTINE TO FIELD PROPER SUB-RECORD
495 REM WITHIN THE PHYSICAL 256 BYTE RECORD
500 SR=LR-4*INT (CLR-1) /4) -1
510 PR INT" SUB-RECORD # =" ,; SR
520 FIELD 1,SR*62 AS DS,20 AS N$, 25 AS AD$,15 AS CT$,2 AS ST$
530 RETURN

43

Note that the FIELD statement has been placed in a subroutine

llines SOQ-530). Given the logical record number (LR), the program

calculates \tlhich physical record (PR) the logical record is found in.

This record is read into the buffer (GET 1, PR). Next the entire buffer

is FIELDed so that N$, AD$, CT$, and ST$ refer to the desired sub-record

(SR).

This program will allow creation, retrieval, or modification of any

logical record. When the program is RUN, the user is asked if READ or

WRITE is desired. The logical record number is then asked for and the

data is displayed for READ. For WRITE the input of name, address, city,

and state are requested, and the new data is written onto disk. Type

a logical record number of zero to get back to the read or write question.

At this point pressing BREAK will stop the program. Note that the program

can change a sub-record with in a physical record without harming any of

the data in the other sub-records.

Typical RUN follows:

>RUN

TYPE 1 TO WRITE, 2 TO READ? 1

ENTER LOGICAL RECORD NUMBER? 1
SUB-RECORD I= 0
PHYSICAL RECORD I= 1

? JOHN DOE NAME
ADDRESS
CITY
STATE

? 111 ANYSTREET
? ANYTOWN
? TX

ENTER LOGICAL RECORD NUMBER? 6
SUB-RECORD I= 1
PHYSICAL RECORD I= 2

? JOHN SMITH NAME
ADDRESS
CITY
STATE

? 1011 DISK DRIVE
? SOMEWHERE
? CA

44

ENTER LOGICAL RECORD NUMBER? 0

ENTER 1 TO WRITE, 2 TO READ ? 2

ENTER LOGICAL RECORD NUMBER? 6
SUB-RECORD I= 1
NAME
ADDRESS
CITY
STATE

JOHN SMITH
1011 DISK DRIVE
SOMEWHERE
CA

ENTER LOGICAL RECORD NUMBER? 0

TYPE 1 TO WRITE, 2 TO READ? (BREAK)
BREAK AT 110
READY
)

DISK ERRORS

Disk BASIC expands LEVEL II' s 2 letter error messages into full

words . An MO ERROR becomes a MISSING OPERAND ERROR, etc. There is

an additional set of messages which indicate errors relating to disk

operations. These errors could potentially destroy data files if

perpetuated, so error trapping is not supported with disk errors. All

other errors may be trapped by "ON ERROR GOTO" just as in LEVEL II.

45

ERROR MESSAGES

CODE

so

51

52

54

55

57

58

59

61

62

63

64

65

66

67

ERROR MESSAGE

FIELD OVERFLOW

INTERNAL OVERFLOW

BAD FILE NUMBER

FILE NOT FOUND

BAD FILE MODE

DISK I/O ERROR

FILE ALREADY EXISTS

SET TO NON-DISK STRING

DISK FULL

INPUT PAST END

BAD RECORD NUMBER

BAD FILENAME

MODE MISMATCH

DIRECT STATEMENT IN FILE

TOO MANY FILES

46

EXPLANATION

More than 255 bytes were allocated to
a Random FIELD

An error has occured in the disk
operating system itself or a disk I/O
fault

A filenumber specified has not been
defined or defined under a different
option

An attempt to access a file which does
not exist

An attempt to perform a sequential
operation or a random file or vise
versa

An error occured in data transfer
between the system and disk

An attempt to rename a file (with
RENAME) when new name has been used
for another file

LSET or RSET used for a string variable
when not fielded.

All available space has been utilized
on a particular disk

An attempt to read more data from a
sequential file than exists

Record number assigned to a Random
record out of range (1-340)

An attempt to assign an illegal
filename

A Random file was opened under
sequential mode or vise-versa

A direct statement was read when
loading a program stored in ASCII

An attempt was made to create more
than 48 files on a disk

TRSDOS OPERATING SYSTEM UTILITIES

The operating system is in control when the message DOS READY is

displayed on the screen. This mode is initiated automatically on power

up and when CMD"S" is executed under Disk Basic. TRSDOS contains several

utility programs which are available anytime DOS READY is displayed. None

of these service routines are available from DISK BASIC, and no utilities

work after CMD"T" has been executed.

Files are referenced with the notation filenamel, filename2.

A file name may be followed by the extension, drive number, and password

if necessary (described in the File Names section of the manual).

AUTO filenamel

Load any CMD file or any utility on power-up, (it will not load BASIC

programs because at POWER UP, BASIC itself has not been loaded yet).

This is an extremely valuable utility for dedicated applications of the

TRS-80. Typing AUTO and the name of a program such as BASIC will cause

BASIC to be loaded automatically everytime the TRS-80 is turned on. Only

one parameter is allowed.

NOTE: If AUTO is told to load a flakey program, the computer will "hang

up" while trying to load the bad program, and appear to stop . In this

case use the MANUAL OVERRIDE. Hold down the ENTER key while the TRS-80

is turned on, this will supress the action of the AUTO command. Then

type AUTO and press ENTER. AUTO followed by no command will return the

TRS-80 to the normal power-up sequence.

47

BACKUP

Backup copies one diskette to a blank diskette. The source drive will

be requested. Reply with a number from Oto 3 (Drive 0 is the closest

drive to the expansion interface). The destination drive will also be

requested. The destination drive must contain the blank diskette -

formatted or unformatted, BACKUP will automatically format it. If the

disk contains any data, BACKUP will be cancelled. To reuse a diskette

either pass a magnet over it or preferably erase it with a bulk tape

eraser, such as Radio Shack, Cat. #44-210. The creation date must then

be supplied in the form MM/DD/YY. BACKUP will format (if necessary),

verify, and copy.

Wheh complete, BACKUP re-boots the DOS. If there is only one disk

on your system, reply 0 (zero) to both SOURCE DRIVE and DESTINATION DRIVE

requests. The system will perform a one disk backup which may require

swapping diskettes back and forth several times.

COPY

COPY filename! to filename2 creates a duplicate of filename! under the

name and descriptors specified by filename2. Example:

COPY JOURNAL3:l.XYZ TO HISTORY:3

A file named JOURNAL3 on drive 1 with password XYZ is duplicated onto

drive 3 under the name of HISTORY. Copy BASIC programs by LOADing from

one diskette and SAVEing to another.

DOS DEBUGGER

The debugger can be invoked under the operating system by typing DEBUG.

The debugger will be executed when 1) the BREAK key is pressed 2) a program

is loaded. Under BASIC, type CMD"D" and the debugger will execute immediate i

type G and press ENTER to return to BASIC. CMD"D" will not work when the

REAL TIME CLOCK has been turned off (CMD"T") for cassette operations.

48

The following commands control the operation of the debugg er:

D nnnn

M nnnn ~ xx

R rr ~ nnnn

X

s

A

H

G nnnn (,bbbb,cccc)

I

C

u

G(ENTER)

Display memory at address nnnn

Modify address nnnn to xx; space bar
increments address

Load register pair with nnnn

Normal display mode (registers and memory)
also terminates any incomplete entry

Full . screen display mode (memory only)

Display all memory in ASCII

Display all memory HEX

Increment memory display 1 block

Decrement memory display 1 block

Go to memory address nnnn, optional
breakpoints bbbb and cccc. If nnnn i s not
specified, execution resume s at last
breakpoint

Step one instruction at a time

Single call step is like I except CALLS
are executed in full

Continuously update the display stop by
holding down X or pressing BREAK key

Returns to BASIC if entered by CMD"D"

DIR~:(DRIVE NUMBER) - displays all file names (with extentions) located

on the specified drive number .

Example:

DIR~:l returns the names of all files on Drive 1

FORMAT - Formats a new or magnetically erased diskette to the TRSDOS

standard of 35 tracks, 10 sectors at 256 bytes. Previously used diskettes

must be erased with a magnet or preferably a high quality bulk type

eraser such as the Radio Shack Cat. #44-210. All tracks are verified;

unusable sectors are marked unavailable to the s ys tem. A drive number is

requested by FORMAT, reply with a number between o and 3 .

49

Drive O i s the

disk closest to the expansion interface. It requests the diskette

name, reply with any name up to 8 letters. This name will be printed

when directories are printed (DIR) . Next input the date in the form

MM/DD/YY. Finally input the master password. The password can be

any word up to 8 characters. It will be used in later versions of

DOS to recover files whose passwords have been forgotten. The next

inquiry provides for TRACK LOCKOUT. If you don't wish to lock out

any tracks, reply N. If the diskette is damaged in a known section,

you can use the good part and lockout the bad by replying Y. WHICH

TRACKS?, reply with individual track numbers separated by commas or a

range of track numbers separated by a dash(-) . FORMAT THE LOCKED

OUT TRACKS? reply Y or N, and format begins.

CLOCK

displays the time on the video monitor

It can only be removed by power off or reset in CMD"T" Disk Basic

TIME)S.hh:mm:ss

DATE~mm/dd/yy

'FRACE

DOS ERROR MESSAGES

sets the time of d,ty

sets the date

prints the Program Counter on the video
display . It can only be r emoved by power
off or reset.

CRC ERROR - there is a flaw in the diskette. The track is locked out and

cannot be u~ed by the system. Affects disk . capacity but not disk performance.

FILE ACCESS DENIED The file exist but the correct password wasn't

provided.

FILE. __ N.QI FOUND - the file does not exist or the name is incomplete.

Reme~ber - file extensions (/BAS/SYS etc) must be given if the file was

created with an extension.

so

RADIO SHACK MA DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

280 -316 VICTORIA ROAD
RYOALMEAE. NS W 2116

TANDY CORPORATION
BELGIUM

PARC INOUSTRIE L DE NANINNE
5140 NANINNE

U K

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7J N

PRINTED IN U.S.A.

